首页> 外文OA文献 >Differential-algebraic approach to constructing representations of commuting differentiations in functional spaces and its application to nonlinear integrable dynamical systems
【2h】

Differential-algebraic approach to constructing representations of commuting differentiations in functional spaces and its application to nonlinear integrable dynamical systems

机译:微分代数方法构造的表示   功能空间的通勤差异及其在功能空间中的应用   非线性可积动力系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is developed a differential-algebraic approach to studying therepresentations of commuting differentiations in functional differential ringsunder nonlinear differential constraints. An example of the differential idealwith the only one conserved quantity is analyzed in detail, the correspondingLax type representations of differentiations are constructed for an infinitehierarchy of nonlinear dynamical systems of the Burgers and Korteweg-de Vriestype. A related infinite bi-Hamiltonian hierarchy of Lax type dynamical systemsis constructed.
机译:开发了一种微分代数方法来研究在非线性微分约束下的功能性微分环上的通勤微分。详细分析了一个仅有一个守恒量的微分理想的例子,为Burgers和Korteweg-de Vriestype非线性动力学系统的无限层次构造了微分的相应Lax类型表示。构造了Lax型动力系统的一个相关的无限双哈密顿层次。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号